Data Warehousing with BigQuery: Storage Design, Query Optimization, and Administration

In this course, you learn about the internals of BigQuery and best practices for designing, optimizing, and administering your data warehouse. Through a combination of lectures, demos, and labs, you learn about BigQuery architecture and how to design optimal storage and schemas for data ingestion and changes. Next, you learn techniques to improve read performance, optimize queries, manage workloads, and use logging and monitoring tools. You also learn about the different pricing models. Finally, you learn various methods to secure data, automate workloads, and build machine learning models with BigQuery ML.

Enquire today
Duration 3 days
Level intermediate
Format Instructor led

What you'll learn

  • Describe BigQuery architecture fundamentals.
  • Implement storage and schema design patterns to improve performance.
  • Use DML and schedule data transfers to ingest data.
  • Apply best practices to improve read efficiency and optimize query performance.
  • Manage capacity and automate workloads.
  • Understand patterns versus anti-patterns to optimize queries and improve read performance.
  • Use logging and monitoring tools to understand and optimize usage patterns.
  • Apply security best practices to govern data and resources.
  • Build and deploy several categories of machine learning models with BigQuery ML.

About this course


11 modules · 11 labs · 15 total classroom activities

Who this course is for

Data analysts, data scientists, data engineers, and developers who perform work on a scale that requires advanced BigQuery internals knowledge to optimize performance.


Big Data and Machine Learning Fundamentals



Not Covered

Introduction to BigQuery, basic data warehousing concepts, distributed data processing concepts, SQL: these are all prerequisites/assumed prior knowledge.

Administrative tasks, data warehouse migrations, analyzing data with BigQuery: these are not the focus of this course and are covered in other courses.

Module 1
BigQuery Architecture Fundamentals
  • Introduction
  • BigQuery Core Infrastructure
  • BigQuery Storage
  • BigQuery Query Processing
  • BigQuery Data Shuffling
  • Explain the benefits of columnar storage.
  • Understand how BigQuery processes data.
  • Explore the basics of BigQuery’s shuffling service to improve query efficiency.

Labs and demos

Module 2
Storage and Schema Optimizations
  • BigQuery Storage
  • Partitioning and Clustering
  • Nested and Repeated Fields
  • ARRAY and STRUCT syntax
  • Best Practices
  • Compare the performance of different schemas (snowflake, denormalized, and nested and repeated fields).
  • Partition and cluster data for better performance.
  • Improve schema design using nested and repeated fields.
  • Describe additional best practices such as table and partition expiration

Labs and demos

Module 3
Ingesting Data
  • Data Ingestion Options
  • Batch Ingestion
  • Streaming Ingestion
  • Legacy Streaming API
  • BigQuery Storage Write API
  • Query Materialization
  • Query External Data Sources
  • Data Transfer Service
  • Ingest batch and streaming data.
  • Query external data sources.
  • Schedule data transfers.
  • Understand how to use Storage Write API.

Labs and demos

Module 4
Changing Data
  • Managing Change in Data Warehouses
  • Handling Slowly Changing Dimensions (SCD)
  • DML statements
  • DML Best Practices and Common Issues
  • Write DML statements.
  • Address common DML performance problems and bottlenecks.
  • Identify slowly changing dimensions (SCD) in your data and make updates.
Module 5
Improving Read Performance
  • BigQuery’s Cache
  • Materialized Views
  • BI Engine
  • High Throughput Reads
  • BigQuery Storage Read API
  • Explore BigQuery’s cache.
  • Create materialized views.
  • Work with BI Engine to accelerate your SQL queries.
  • Use the Storage Read API for fast access to BigQuery-managed storage.
  • Explain the caveats of using external data sources.

Labs and demos

Module 6
Optimizing and Troubleshooting Queries
  • Simple Query Execution
  • SELECTs and Aggregation
  • JOINs and Skewed JOINs
  • Filtering and Ordering
  • Best Practices for Functions
  • Interpret BigQuery execution details and the query plan.
  • Optimize query performance by using suggested methods for SQL statements and clauses.
  • Demonstrate best practices for functions in business use cases.

Labs and demos

Module 7
Workload Management and Pricing
  • BigQuery Slots
  • Pricing Models and Estimates
  • Slot Reservations
  • Controlling Costs
  • Define a BigQuery slot.
  • Explain pricing models and pricing estimations (BigQuery UI, bq dry_run, jobs API).
  • Understand slot reservations, commitments, and assignments.
  • Identify best practices to control costs.


Module 8
Logging and Monitoring
  • Cloud Monitoring
  • BigQuery Admin Panel
  • Cloud Audit Logs
  • Query Path and Common Errors
  • Use Cloud Monitoring to view BigQuery metrics.
  • Explore the BigQuery admin panel.
  • Use Cloud Audit logs.
  • Work with INFORMATION_SCHEMA tables to get insights for your BigQuery entities.

Labs and demos

Module 9
Security in BigQuery
  • Secure Resources with IAM
  • Authorized Views
  • Secure Data with Classification
  • Encryption
  • Data Discovery and Governance
  • Explore data discovery using Data Catalog.
  • Discuss data governance using DLP API and Data Catalog.
  • Create IAM policies (e.g., authorized views) to secure resources.
  • Secure data with classifications (e.g., row-level policies).
  • Understand how BigQuery uses encryption.

Labs and demos

Module 10
Automating Workloads
  • Scheduling Queries
  • Scripting
  • Stored Procedures
  • Integration with Big Data Products
  • Schedule queries.
  • Use scripting and stored procedures to build custom transformations.
  • Describe how to integrate BigQuery workloads with other Google Cloud big data products.


Module 11
Machine Learning in BigQuery
  • Introduction to BigQuery ML
  • How to Make Predictions with BigQuery ML
  • How to Build and Deploy a Recommendation System with BigQuery ML
  • How to Build and Deploy a Demand Forecasting Solution with BigQuery ML
  • Time-Series Models with BigQuery ML
  • BigQuery ML Explainability
  • Describe some of the different applications of BigQuery ML.
  • Build and deploy several categories of machine learning models with BigQuery ML.
  • Use AutoML Tables to solve high-value business problems.

Labs and demos

AboutAppsbroker Academy

Appsbroker Academy is an Authorised Training Partner for Google Cloud. Drawing on our own highly skilled engineers’ unique experiences and expertise, we provide dedicated, industry-specific training using real-life examples to help your people to thrive.

Find out more

Contact Us

Start your Cloud training journey today.